Rational Points on Quartics

نویسندگان

  • JOE HARRIS
  • YURI TSCHINKEL
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The shape of spherical quartics

We discuss the problem of interpolating C Hermite data on the sphere (two points with associated first derivative vectors) by spherical rational curves. With the help of the generalized stereographic projection (Dietz et al., 1993), we construct a two– parameter family of spherical quartics solving this problem. We study the shape of these solutions and derive criteria which guarantee solutions...

متن کامل

The Number of Rational Quartics on Calabi-yau Hypersurfaces in Weighted Projective Space P(2, 1)

We compute the number of rational quartics on a general Calabi-Yau hypersurface in weighted projective space P(2, 1). The result agrees with the prediction made by mirror symmetry.

متن کامل

On the computation of Mordell-Weil and 2-Selmer Groups of Elliptic Curves

The first provides an alternative to computing the height pairing matrix of the given set of points and showing that its determinant is non-zero. While that is easily done, for curves of large rank it requires some delicate consideration of precision in order to be sure of the result. The method here, by contrast, involves only “discrete” computations: finding roots of cubics and evaluating qua...

متن کامل

Counting Plane Rational Curves: Old and New Approaches

These notes are intended as an easy-to-read supplement to some of the background material presented in my talks on enumerative geometry. In particular, the numbers n3 and n4 of plane rational cubics through eight points and of plane rational quartics through eleven points are determined via the classical approach of counting curves. The computation of the latter number also illustrates my topol...

متن کامل

Asymptotics for Length and Trajectory from Cumulative Chord Piecewise-Quartics

We discuss the problem of estimating the trajectory of a regular curve γ : [0, T ] → R and its length d(γ) from an ordered sample of interpolation points Qm = {γ(t0), γ(t1), . . . , γ(tm)}, with tabular points t′is unknown, coined as interpolation of unparameterized data. The respective convergence orders for estimating γ and d(γ) with cumulative chord piecewise-quartics are established for dif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000